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A new view of d = 7 Clifford algebra 

R Shaw 
School of Mathematics, Unibersity of Hull ,  HU6 7RX, U K  

Received 11 May 1987 

Abstract. A new view of d = 7 Clifford algebra is described in which, starting from a septet 
of mutually anticommuting Clifford operators, one introduces a septet of mutually commut- 
ing involutions E SO(8). These involutions can be seen to arise naturally from a study of 
ternary vector cross products in eight dimensions. 

1. Introduction 

In a recent study by the author of ternary vector cross products on eight-dimensional 
space [ 13 it emerged that certain involutions E SO(8) played an  important role. As an 
offshoot of this study a new way of viewing d = 7 Clifford algebra was arrived at. In 
fact this new view (see equations (22)-(24) below) can be obtained quite directly, 
without explicit appeal to ternary vector cross proctucts, or for that matter to octonions, 
as will be set out in the main part of this paper. The link-up with ternary vector cross 
products is briefly described in the appendix. 

To set the stage let us first of all describe the usual view of the SO(7) Clifford 
algebra associated with a real inner product space R 7 .  If, in an  irreducible representa- 
tion, the pth element b, of an  orthonomal basis for R 7  is represented by r,,, then in 
addition to 

(1) rprq + rqrp = -2~3,~  

(ro= )r,r,. . . r, = 7 7 ~  

we must have, by Schur's lemma, 

q = +1 or -1 (2) 

(since (To)' = + I  and To commutes with each T,). Consider the finite group G,2s of 
order 128: 

GIB = { * I ,  * r p ,  * r p q ,  * r p q r }  (3) 

where rp4 = r[, rql, rpqr = r L P  rJr1 Now the 56 elements *rp,*r 'p4 have squares 
equal to -I ,  and the remaining 72 elements *I ,*rpqr have squares equal to +I. Thus 
the average of these squares is + $ I .  This fact immediately entails two things (see, for 
example, [2] equation (45)): firstly the representation is eight dimensional over C and 
secondly it is of (Frobenius-Schur) real type. Consequently we can take the Dirac 
operators r p  to act upon a real eight-dimensional vector space E. (Information 
concerning Clifford algebras for spaces of other dimensions and signatures can be 
obtained similarly.) By averaging over G,zic we can construct an  inner product (, ) for 
E which is invariant, that is r p  E O( E ) ;  consequently r p  E Sk ( E ,  E )  (the space of skew 
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8 R Shaw 

adjoint maps E -$ E ) .  On dimensional grounds we now arrive at the following well 
known results for the 63-dimensional space Lo( E, E )  2 sl(8; R) consisting of the zero- 
trace linear operators on E. The ( 7 + 2 1  = )28 elements 

{ r p }  U { r p q  ; P < 41 

Vpqr ; P < 9 < r l  

(4) 

form a basis for the subspace Sk( E, E )  = so(8), and the 35 elements 

(5)  

form a basis for the subspace So(E, E )  of zero-trace self-adjoint operators. 

2. The new view 

As a prelude to the new view of things, consider the finite projective plane geometry 
consisting of the seven points 

(6) 9 = { 1 , 2 , 3 ,  O', l', 2', 3'} 

w = 123 a ,  = 13'2' a2 = 21'3' cr3 = 32'1' 

p1 = 0'1 1' p2 = 0'22' P3 = 0'33'. 
(8)  

Thus each line consists of precisely three points and each point lies on precisely three 
lines. (The labelling is chosen so as to link up with El].) The lines A E T together 
with an identity element L form an Abelian group L8 of order eight, upon defining 

h 2 =  L AEY 

A*p  = U whenever A, p, v are distinct and concurrent. 

One easily sees that this 'group of lines' L8 is isomorphic to Z2 x Z2 x Z2, any three 
non-concurrent lines (for example, c y I ,  a 2 ,  a 3 )  generating a suitable triple of Z2 sub- 
groups. Of course the points p E 9' together with an identity element po form an Abelian 
'group of points' P8 Z2 x Z2 x Z2,  with relations 

PZ = P o  P E P  
(9 ' )  

p ' q  = r whenever p ,  q, r are distinct and collinear. 

We may view p8 as the dual group i s  of L8, consisting of the eight simple characters 
of L8: 

p8 1: i 8  = {XO 9 x p  ; P E 

Here xo denotes the trivial character and xp(A) = E ; ,  where 

ifpEA 
i f p g h .  
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One easily check: that the correspondence po*xp0= ,yo, p - x ,  establishes an 
isomorphism P8 = L8 : 

X&b = x a .  b a, b, E Pa. (12) 
For the purpose of applications to d = 7 Clifford algebra, three cyclic orderings 

pqr, qrp, rpq of the points of a line A E 2’ will be considered to be ‘positive’, and the 
other three orderings ‘negative’. The orderings listed in (8) are laid down as positive. 
We now make some choice of one-to-one correspondence p e r ,  between P and the 
previous (but now relabelled) mutually anticommuting septet {T,} of Clifford operators. 
Any choice will do, except that, for the moment, we will restrict attention to a set 
{r, ; p E P} of Clifford operators which are ‘right-handed’ in the sense that 

(To= )r1230,1,2~3,= + I .  
For each A E 2’ we define n^ by 

r p q r  =-nA (14) 

r0,,,, (15) no, = - 
where pqr are the points of A in positive order. Thus in detail we have 

n e ,  = - l - l k j ’  nu = -r123 
where ijk runs through the values 123, 231, 312. Observe that 

(i)  (nA)2 = I A E Y  
(16) 

(ii) n^n. = n v  whenever A, p, v are distinct and concurrent. 

Thus L H I, A ~ n ”  defines an eight-dimensional faithful representation, Il say, of the 
group of lines L8. Notice further that rp  commutes or anticommutes with nA according 
as P E A  or P E A :  

The usual way of dealing with the algebra 
L(E,E)=Sk(E,E)@S,(E,  E)O<Z> 

of linear operators on E is to employ the bases (4) and (5 )  for Sk(E, E ) ,  &(E,  E )  in 
conjunction with the multiplicative properties (1) and (13). These same bases are now 
perceived in a new light: 

(so(8) =)  Sk(E, E )  = V 7 0  V2’ &(E, E )  = w70 WZ8 (19) 
where 

( R 7 = ) V 7 =  <I-,; P E  P> 

(spin(7) = ) V” = <rPnA; p E 9, A E 2, p E A > 
and 

Moreover the content of d = 7 Clifford algebra can be summarised by the following 
multiplicative properties: 

(I-,)’= - I  (nA)2 = + I  (22) 
rprs = -r4rp = n^r, n^nI. = n.n* = n”  (23) 
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where in (23) p # q, A # p, pqr are the points of A in positive order and  v( # A ,  p )  is 
concurrent with A, p. There is no need to add (13) to the list (22)-(24), since, for 
example, the particular case l l p ~ 1 3 p 2 1 1 p ~  = I of (23) becomes in conventional notation 
( -To.,,.)( 

Incidentally we did not set out in (22)-(24) to display a minimal list of properties. 
For example the anticommutativity of r,, Ts, for p # q, follows from Tpr4 = nAT, upon 
taking inverses and using (22) and (24). 

-T0*33,) = I from which (13) follows. 

3. Canonical axes and simultaneous canonical forms 

In our finite plane there is of course complete duality between points and lines. Clearly 
this does not go through as far as our algebra is concerned. For a start the points are 
associated with a septet { r p }  of mutually anticommuting imaginary units E SO( E )  
while the lines are associated with the septet {n"} of mutually commuting involutions 
E S O ( E ) .  Being an  involution, nA is diagonalisable upon E;  its +1 and -1 eigenspaces 
have dimension four, since Tr(II") = 0. Indeed, since the seven II" mutually commute, 
they are simultaneously diagonalisable, and their * 1 eigenspaces are consequently 
mutually compatible (see, e.g., [3]). Rather than proceed, in this manner, entirely in 
terms of elementary linear algebra, it will speed matters if we employ some (equally 
elementary) group representation theory. 

By averaging over the group L8 we can construct out of the representation Il of L8 
eight projection operations F, associated with the eight irreducible representations X ,  
of Lg: 

Fa = Av, , , ,{x ,k)~(g) )  a E PB (25) 
(with Fpo = F,). Since Tr (F , )  = 1, each irreducible representation x, is contained 
precisely once in a complete reduction of II. Consequently there exists an  orthonormal 
basis { e , }  for E such that I I ( g ) e ,  = x n ( g ) e ,  and which therefore simultaneously 
diagonalises all of the n" in the manner 

n A e o  = e, n h e p  = & ; e p  p E 9. (26) 
Now it follows from (17) that II"(T,e,)  = & ; ( T p e o ) ,  whence T,e,= * e p .  Let us agree 
to fix the relative signs of the basis vectors e,  by the convention 

r p e o  = + ep p E 8. (27) 
We have thereby obtained a simultaneous canonical form for all of the 64 Clifford 
operators of our basis for L ( E ,  E ) ,  in which the seven elements IIA E W7 take the 
diagonal form (26) and  the seven operators r p  E V7 satisfy 

Tpe ,  = e,  (28) 
whenever the distinct points p, q, r are collinear and in positive order. For example, 
we have for rl the canonical form 

r, = J,, + J ? ~  + ~3 + J,.,. (29) 
where Jab = -2e,  A eh (on identifying A ' E  with Sk(E, E )  in the usual manner), and  
for TZ3 the canonical form 

(29') rr3 = r,n- = J ~ ,  + J~~ - J ~ . ~ .  - J~.,. 
(since by (26) nu acts as +1 upon e, ,  e , ,  e , ,  e3 and as - 1  upon eh, e : ,  e ; ,  e.;). 
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Starting from a choice of a septet of mutually orthogonal axes <r,> for V’, 
together with a choice of one-to-one correspondence of the rp  with the points p E 9, 
we have constructed an  octet of mutually orthogonal axes <e,> for the space E. At 
first sight it appears that the axis <e,> stands out as privileged. For, leaving aside 
the slight privilege accorded to the vector e,, as compared to the vectors ep ,  in our 
convention (27), is not the axis <e,> singled out by the fact that, in the decomposition 
of the representation n of L8, it alone is associated with the trivial character ,yo of L8? 

In fact this is a spurious view of the situation which has arisen because we have dealt 
with the non-invariant subgroup G8 = JJ( L8) of GI28 : 

G8 = { I, nA ; I\ E T} C GI 2 8 .  (30) 

To see clearly that democracy does in fact reign amongst the eight axes <e,> let 

G16={*1, i n A ;  A E z } a G l 2 8 .  (31) 

us deal instead with the invariant subgroup 

Note that GI28 has coset decomposition 

so that G,28/G16 is isomorphic to Pg.  Of course we have G16=Z2xG8,  where Z 2 =  
{ I ,  - Z } c  GI6 denotes the centre of G12,. But equally we have G I ~ ~ Z ~ X G ~ ( P )  for 
each p E P, where G8(p) = GI6 is the conjugate of (38 in GI28 by r p  : 

G8(p) = r ~ G S ( ~ p ) - l  (34) 

Consider the dual group 6 1 6  (consisting of the 16 simple characters of the Abelian 
group G16) which is a GI28 space under the action x + g x  where 

( g x ) (  n )  = x ( g - l n g )  gEGl2X9 n E G 1 6 *  (35) 

Now G I ,  comes to us in terms of the eight-dimensional defining representation (31) 
in which Z2 is represented faithfully. So we are concerned solely with those eight 
simple characters E,,  a E P8, given by 

E ,  = E  x x ,  4 U U  G16 as 2 2  X G g  (36) 

r o & b  = &,.h a, b E P8. (37) 

where & ( * I )  = *l. These form a single GI28 orbit, since we have 

Clearly democracy reigns, the octet { e ,  ; a E P8} forming a homogeneous space for GI28 
under the action (35). (Each of the other simple characters, obtained by replacing E 

in (36) by the trivial character for Z 2 ,  form singleton G I 2 8  orbits.) Of course it is 
merely our labelling convention which is geared to the view of G,,  as Z 2  x G,. If for 
p E 9 we define 

E x x a  P a  GI, as Z2xGdp)  (36‘) & ; p ’ =  

then the eight characters E:” (=ep . , )  would just be a permutation of the previous eight 
characters E,.  Just as E , ( K )  = +1 for g E GB, so does e h p ) ( g )  = +1 for g E G,(p). 
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It probably clarifies things still further if we describe the foregoing set-up in terms 
of induced representations. Let U denote the defining eight-dimensional irreducible 
representation of the group G l Z g :  U(g) =g,  gEGlzs .  Since the r, permute the axes 
<e,> amongst themselves by way of 

r a s e , >  = < e , . b >  a, b E Pa (38) 

we see that the octet {<e,>;  a E P g }  of canonical axes forms a transitive system of 
imprimitivity for the representation U. Now the isotropy group of each axis <e, > is 
clearly GI6, and the restriction to <e,> of the subduced representation UJG16 is 
given by 

U(n)ea = ~ , ( n ) e ,  n E G16. (39) 

Consequently we see, for each a E P g ,  that U can be viewed as the induced rep- 
resentation 

U c= E~(G16)?G128 .  (40) 

Of course we have just been dealing with a particular case of the well known 
theorem due to Clifford concerning representations induced in an invariant subgroup 
(see [4] and, for example, [ 5 ] ) .  In our case there were several special features. In 
particular the invariant subgroup GI, coincided with the isotropy subgroup of one 
(indeed every) irreducible consistuent of UJG,, , and the common multiplicity of these 
irreducible constituents, the set { E , }  of mutually conjugate representations, was 1 .  

4. Miscellaneous remarks 

(a) Just as the septet {r, ; p E 9} forms a maximal anticommuting subset of the basis 
(4), ( 5 )  for Lo ( E ,  E ) ,  so does the septet {HA; A E Y} form a maximal commuting set. 

(b) Of course, the fact that our canonical octet of axes {<e ,>}  forms a transitive 
system of imprimitivity for U is equally well seen in terms of the property 

r,Fbr,' = F, .b  a, b E P, (41) 

of the associated family { F a }  of projections. Incidentally these latter can be defined 
in terms of averaging over G16: 

Fa = A v n E ~ , ~ { ~ a ( n ) n )  a E P,. (42) 

Each F, can be written as a product of three commuting projections onto (mutually 
compatible) four-dimensional subspaces, relative to a choice of three generators for 
the group G,(a). For example, choosing nul, na2, nm3 as generators of Gg, we havet 

(43) Fo = f( I + I I " 1 ) ; (  I + I I ' 2 ) $ (  I + n5). 
(c) To highlight the symmetry present in many of our considerations it helps (cf 

(44) 

[ l ] )  to put the octet 

{ E , ;  a =O, 1,2, 3,0', 1', 2',3'} 

+ Since completing the present work the author has discovered, after correspondence with L P Horwitz, that 
essentially the same projections as the Fa were employed previously by Goldstine and Horwitz [ 6 ] .  
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in correspondence with the eight points {0, 1, 2,3,0’, l‘, 2’, 3’} of the three-dimensional 
affine geometry SP over the finite field F2 of order 2. Points p ,  q, r in the previous 
plane projective geometry (also over F 2 )  are collinear if and only if the four points 0, 
p ,  q, r of the affine geometry are coplanar (the remaining four points forming a parallel 
plane). Each affine line consists of two points, and we have that 

ab is parallel to cd &,Eh = E , E ~ .  (45) 

In the affine geometry there are seven quadrupoles of mutually parallel lines, namely 

01 23 3’2’ 1‘0’ 

02 31 1’3’ 2’0’ 

03 12 2’1’ 3’0’ 

00’ 11’ 22’ 33‘ 

01’ 3’2 32’ 0‘1 

02’ 1’3 13‘ 0’2 

03‘ 2’1 21’ 0’3 

and seven pairs ( P A ,  P ” ) ,  A E 2, of parallel planes: 

A = w  Pi P2 P 3  f f l  ff2 ff3 

P A  = 0123 011’0‘ 022‘0’ 033’0‘ 013’2’ 021’3’ 032’1’ (47) 

PA* =0’1’2’3’ 233‘2‘ 311’3’ 122‘1’ 0’1’32 0’2’13 0’3‘21. 

For the purposes of displaying canonical forms, as embarked upon in (29), a further 
refinement is necessary: the two orderings ab and ba of the points of a line will be 
distinguished, and we will view the lines of a quadrupole in (46) as ‘strictly parallel’ 
(rather than ‘antiparallel’), which we write ‘-’, when the order is displayed. So, for 
example, we have 

00‘- 11’-22’-33’. (48) 
The scheme (46) is consistent with ‘ - ’ being an equivalence relation which obeys the 
following rule: 

if a, 6, c, d are distinct, then ab - cd implies ac - db. (49) 
In fact, using this rule, the whole scheme (46) follows from, for example, (48) together 
with, for example, 01 - 23. The other canonical forms analogous to (29) are now 
simply read off. For example, we have 

To, = J ~ ~ . + J ~ ~ ~ + J ~ ~ . + J ~ ~ . .  (50) 
Incidentally we have ordered the points a, b, c, d in each plane of (47) so that they 
satisfy ab - cd. 

Since {r, ; p E Y} is a basis for V’, and since V2’ is the orthogonal complement of 
V7 in Sk ( E ,  E )  then for F E  Sk(E, E )  we have FE  V7 if and only if 

F = 1 APT, some A, E R  (51) 

( F ,  r,) = 0 each p E 9. (52) 

P 

and FE  V21 if and only if 



14 R Shaw 

Using the canonical form for the r,, exemplified by (50) the condition (51 )  on F breaks 
down into seven sets of four equations, one set being exemplified by 

Foo = F, ,  = F,, = F3? (53) 

and the seven equations in the condition (52) are exemplified by 

( F ,  ro) = FOo + F1, + F 2 2  + F73 = O .  (54) 

Equations of the kind (53) and (54) arose in the work of Corrigan et a1 on higher- 
dimensional gauge theories (see [7]). 

(d) For each p E P the four-dimensional subspace 

cp = -q, rpnh; A 3 p >  (55)  

is a Cartan subalgebra of the Lie algebra s o ( E )  = Sk(E, E )  which is associated with 
one of the quadrupoles (46). For example we have, from (50), ( 5 5 )  and (26) 

CO = < J O O ,  J 1 1  7 J 2 Z ,  J 3 3 > .  (56) 

Observe that the Lie algebra so( E )  (=so( 8))  consequently possesses a decomposition 

s o ( E )  = o,, PC, (57) 

rc,, C,I = c, q p # q E P *  (58)  

into seven mutually orthogonal Cartan subalgebras such that 

Similarly the Lie subalgebra V2' =spin ( 7 )  of s o ( E )  (see (20)) possesses the decompo- 
sition 

P E  4 (59) 

B, = <r,nA; A 3 p >  P E P  (60) 

into the seven mutually orthogonal Cartan subalgebras 

which satisfy [ E , ,  B 4 ]  = B, , for p # q. 

Appendix 

Let E be a 3 x 8  algebra, as defined in [l] .  Thus E is an eight-dimensional real inner 
product space which is equipped with a ternary vector cross product X : E'+ E. By 
definition X ( a ,  b, c) is linear in each of its arguments, is orthogonal to each of a, 6, c 
and its length IIX(a, b, c)ll equals the volume / la A b A C I I  of the parallelepiped deter- 
mined by a, b, c (cf [8,9]).  Upon defining the associated ternary multiplication 
{ } : E 3 +  E, as in [l], by 

{abc}=(a ,  b)c+(b ,  c ) u - ( c ,  a ) b + X ( a ,  b, C )  ('41) 
then E is considered also as a 3C8 algebra, meaning that the ternary composition 
algebra property 

Il[abclll = IIaII llbll I I C I I  (A21 

is satisfied. The multiplication operators Ta.hr and u ~ , ~ ,  all E + E, are defined 
respectively by c -X(a ,  b, c ) ,  c-{abc},  c ~ { a c b }  and c-{cba}.  We list below some 
of their properties; for further information consult [ 11. 
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First note that for 11 ell = 1 we have ye , e  = u , , ~  = I and pe,e = K ,  where K (= K , )  
denotes ‘conjugation’ with respect to the e axis: Ke = + e  and Kx = -x  for (x, e )  = 0. 
Consequently for [lull = llbll= 1 equation (A2) entails that Y a , b  and u a , b  belong to 
SO(E)  while p a , b  belongs to O-(E) .  In fact for any a, bE E we have 

Y a , b Y b , a =  Ila1I211bll2I = ua,b‘b,a. 

For ( a ,  b )  = 0 we see from ( A l )  that 

Y a , b = - J a , b $  T a , b  u a , b =  - J a , b -  T o . b  (‘44) 

where J a , b  = -2a h b. Now T a , b  = - T b V a  E Sk( E, E )  
have Y a , b  = - Y b , a  E Sk( E, E )  and U a , b  = - U h , ,  E Sk( E, E) .  

A ‘E; hence for ( a ,  b )  = 0 we also 
Next let { b, C ,  d }  be any 

ordered orthonormal triad, and set a = { bcd)  and H = < a ,  b, c, d > (=subspace spanned 
by a, b, c, d ) .  Then, by lemma B of [ 11, H is a 3 x 4  subalgebra of E, having { a ,  b, c, d }  
as orthornormal basis, and moreover we have the property 

- Y b , o Y c . a Y d , a  =nH = f u b , o u r , a u d , a  (‘45) 

where nH E SO(E) denotes the involution which equals + 1  upon the 3 x 4  subalgebra 
H and -1  upon the 3 x 4  subalgebra H L  (the ‘partner’ of H ) .  

To make contact with the d = 7 Clifford algebra considerations in the main part of 
this paper, fix a unit vector e E E and let E ‘  denote the seven-dimensional subspace 
orthogonal to e. Then, using (A3), we have the Clifford algebra properties 

r ( X ) ’ =  -(x, X)Z = z(x)’ X E  E ’  (A61 

U X )  = Yx,e  and Z(X) = m x , e .  (A71 

Z ( X )  = - K T(X) K X E  E ’ .  (A81 

Let now { e ,  ; a = 0, 1,2,  3,0‘, l ‘ ,  2’, 3’) be a canonical basis, as defined in [ 11, for the 
3 x 8  algebra E, with e o =  e. Setting rp  = T ( e , ) ,  the ordered septet { r p ; p =  
1 ,2 ,3 ,0 ’ ,  l‘ ,  2‘, 3’} is a set of right-handed anticommuting Clifford operators which 
satisfy (14) as a special case of the general property (A5). Moreover we have a second 
septet {Z,} of Clifford operators, where 

for the operators T ( x ) ,  Z(x) E Sk(E, E )  defined by 

From (A4) and (A7) and the fact that K ( = K , )  commutes with T , ,  we have 

Z,( = Z ( e , ) )  = - K T p K .  (A91 

From (A5), or from the fact that K commutes with the nA, note that the Zp satisfy 
the ‘left-handed’ version of (13 )  and the opposite-sign version of (14) (the latter holding 
for the same IIA as for the r,). From (29), (29’), etc, we have the canonical forms 

Z1= J o l -  J z j -  J 3  2 - J l  0 

= Z I n w  = J o l -  5 2 3  + J 3  2 + J ,  0 etc. 

Remark. Relative to a choice of unit vector e E E we can define a binary multiplication 
on E by ab = {aeb}  and thereby, on account of (A2), view E as the algebra of the real 
octonions, with e as the identity element. From (A5) we then read off the following 
property of the left multiplication operators La : b - a b  of the octonion algebra: if x, 
y are orthogonal imaginary octonions then 
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where H denotes the quaternion subalgebra <e ,  x, y ,  xy> .  But of course (A5) is more 
general than (AIO), since it holds for any 3 x 4  subalgebra H c E irrespective of whether 
or not H happens to contain the octonion identity element e. (Note incidentally, from 
the preamble to (A5), that any three-dimensional subspace of E lies inside a uniquely 
determined 3 x 4  subalgebra of E.)  

Remark. In the notation surrounding theorem F of [l] ,  let 0 run through the three 
involutory outer automorphisms L, M,  N of the Lie algebra Sk(E, E )  = s o ( E )  = so(8). 
Then we have the three decompositions 

s o ( E )  = V h = - , O  V;=,, ( A l l )  

where the three subspaces V7 are spanned respectively by the septets {J,,,}, {rp}, {E,,} 
and the three subalgebras V21 (=[ V7, V’]) are respectively so(E‘) ,  spinR(7), spinL(7). 
Moreover the three decompositions (A1 1) are cyclically permuted (in the order L + M + 

N +  L )  by the triality automorphism .R = LM = M N  = NL of so( E ) ,  which last keeps 
fixed the g2 subalgebra which is orthogonal to the r,, and C, operators, and hence 
also orthogonal to J , ,  = - (rp + 2,)/2. The corresponding G2 subgroup, the common 
intersection of SO( E ’ ) ,  SpinR(7), SpinL( 7) ,  includes amongst its members the septet 
{W*. 

Remark. As is well known, the Lie algebra so(8) is exceptional in possessing a group 
of outer automorphisms {I, L, M, N, R, a’} of order six (as compared to order two for 
so (2m) ,  m > 4). One can speculate that just possibly this exceptional feature of so(8) 
goes along with some exceptional feature of the finite group GI28 associated, as in (3) ,  
with d = 7 Clifford algebra. For example, is d = 7 Clifford algebra exceptional in that 
the group GI28 possesses a subgroup, namely GI6 of (31), which is a maximal Abelian 
invariant subgroup consisting entirely of involutions? 
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